siRNA-mediated knockdown of ID1 disrupts Nanog- and Oct-4-mediated cancer stem cell-likeness and resistance to chemotherapy in gastric cancer cells
نویسندگان
چکیده
DNA-binding protein inhibitor ID-1 (ID1) serves an essential role in tumor progression, and the self-renewal and pluripotency of embryonic stem cells. However, the effect of ID1 on the stemness and cancer stem cell (CSC)-like properties of gastric adenocarcinoma cells remains to be elucidated. In the present study, effective ID1 knockdown was achieved in gastric cancer (GC) cells using small interfering RNA, and the self-renewal ability and cisplatin (DDP) sensitivity of GC cells was subsequently examined. ID1 knockdown in the MKN-28 and MGC-803 cell lines was demonstrated to significantly suppress colony formation (P=0.005 in MKN-28 and P=0.001 in MGC-803), tumor spheroid formation (P=0.021 in MKN-28 and P=0.037 in MGC-803), cell proliferation (P=0.028 in MKN-28 and P=0.001 in MGC-803) and migration (P=0.002 in MKN-28 and P=0.015 in MGC-803). To the best of our knowledge, the present study revealed for the first time that ID1 knockdown suppresses the expression of the key CSC-associated factors Nanog and octamer-binding protein 4 (Oct-4). It was further demonstrated that ID1 knockdown sensitized GC cells to DDP. In conclusion, knockdown of ID1 attenuates the stem cell like-properties of self-renewal in normal GC cells, potentially through the targeting of Nanog and Oct-4, and subsequently decreases cell proliferation and resistance to DDP. The results of the present study suggest that ID1 functions as an oncogene in GC and regulates the stem cell like-properties of gastric cancer cells by targeting Nanog and Oct-4.
منابع مشابه
Study of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line
Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...
متن کاملStudy of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line
Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...
متن کاملKnockdown of HSF1 sensitizes resistant prostate cancer cell line to chemotherapy
The treatment of prostate cancer patients usually starts with androgen ablation and followed by chemotherapy; however, in some cases the tumor develops resistant phenotype. Combination therapy is currently regarded as a cornerstone in cancer therapy to overcome the drug resistance. Herein, we investigated the combinatory effect of Docetaxel and Trastuzumab with a novel nanomedicine, BCc1. Also,...
متن کاملNanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer
Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...
متن کاملO26: Targeted Delivery of siRNA in a Nano-Particle Suppress Glioblastoma Stem Cells
Cancer stem cells (CSCs) are suggested as the most dominant causes of recurrence due to their permanent self-renewal and resistance to common cancer treatment in glioblastoma multiform (GBM) which is recognized as the most malignant of brain tumor. It has been indicated that Retinoblastoma-binding protein 5 (RBBP5), a main part of Mixed lineage leukemia protein-1 (MLL1), plays a significant rol...
متن کامل